Controlled assembly of layer-by-layer stacking continuous graphene oxide films and their application for actively modulated field electron emission cathodes.

نویسندگان

  • Yuan Huang
  • Juncong She
  • Wenjie Yang
  • Shaozhi Deng
  • Ningsheng Xu
چکیده

A featured "vapor transportation" assembly technique was developed to attain layer-by-layer stacking continuous graphene oxide (GO) films on both flat and concavo-concave surfaces. Few-layer (layer number < 10) GO sheets were "evaporated" (carried by water vapor) from the water-dispersed GO suspension and smoothly/uniformly tiled on the substrate surface. We have found evidence of the influence of the deposition time and substrate-liquid separation on the film thickness. A model was proposed for interpreting the assembly process. It was found that a current conditioning would induce a reduction of the GO surface and form an Ohmic contact between the GO-metal interfaces. Accordingly, an actively modulated GO cold cathode was fabricated by locally depositing continuous GO sheets on the drain electrode of a metal-oxide-semiconductor field effect transistor (MOSFET). The field emission current of the GO cathode can be precisely controlled by the MOSFET gate voltage (VGS). A current modulation range from 1 × 10(-10) A to 6.9 × 10(-6) A (4 orders of magnitude) was achieved by tuning the VGS from 0.812 V to 1.728 V. Due to the self-acting positive feedback of the MOSFET, the emission current fluctuation was dramatically reduced from 57.4% (non-control) to 3.4% (controlled). Furthermore, the integrated GO cathode was employed for a lab-prototype display pixel application demonstrating the active modulation of the phosphor luminance, i.e. from 0.01 cd m(-2) to 34.18 cd m(-2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Reduced Graphene Oxide Doped in Sol-Gel Derived Silica for Application in Electrochemical Double-Layer Capacitors

In this study, a new graphene ceramic composite (GCC) was prepared based on the reduced grapheneoxide (rGO) doped in sol-gel derived silica. The GCC was prepared by dispersing rGO nanosheets intothe sol-gel precursors containing methyl triethoxysilane, methanol and hydrochloric acid solution.During an acid catalyzed hydrolyze reaction and gelation proc...

متن کامل

Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates

Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...

متن کامل

Fabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique

Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...

متن کامل

Preparation and characterization of Graphene/Nickel Oxide nanorods composite

Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...

متن کامل

Preparation and characterization of Graphene/Nickel Oxide nanorods composite

Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 8  شماره 

صفحات  -

تاریخ انتشار 2014